Developmental Contribution of Wnt-signal-responsive Cells to Mouse Reproductive Tract Formation
نویسندگان
چکیده
In mammals, the müllerian duct (MD) is an embryonic tubular structure that gives rise to the female reproductive tract (FRT). The MD originates from the coelomic epithelium (CoE) and takes on a rostral to caudal shape to establish the primary structure of the FRT under the regulation of morphogenetic signals. During these developmental processes, the MD and its derivatives require proper regulation of the Wnt-signaling-pathway. Here, to investigate the developmental contribution of FRT primordia under the influence of the Wnt-signaling, genetic lineage tracing was carried out using TopCreER/Rosa-LacZ mice to follow the fate of Wnt-signal-responsive cells during reproductive tract formation. TopCreER-marked-LacZ+ cells, arising from the Wnt-signal-responsive progenitors in CoE, give rise to spatially restricted MD and the uterine luminal epithelium. Similarly, the progeny from LacZ+ mesenchymal cells surrounding the MD contribute to both the uterine smooth muscle and stroma. Furthermore, in males, the Wnt-signal-responsive MD mesenchyme develops into the epididymis. These results show, for the first time, evidence of the sequential involvement of reproductive tract progenitors under the influence of Wnt-signal throughout the developmental term. This study provides a precise outline for assessing the lineage relation between the reproductive tract and the cell fate of its primordia in a temporally regulated manner.
منابع مشابه
Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/β-catenin-responsive neural stem cells.
Since the discovery of neural stem cells in the mammalian brain, there has been significant interest in understanding their contribution to tissue homeostasis at both the cellular and molecular level. Wnt/β-catenin signaling is crucial for development of the central nervous system and has been implicated in stem cell maintenance in multiple tissues. Based on this, we hypothesized that the Wnt p...
متن کاملEffect of Two Polarized Culture System Prepared From Human Female Genital Tract on Mouse Embryo Development
Purpose: To compare effects of polarized epithelial monolayer prepared from human oviduct and uterus on mouse one and two-cell embryo development. Materials and Methods: Human oviduct and endometrial tissue was obtained from patients who had undergone total hysterectomy. The epithelial cells were isolated from tissue and cultured on extracellular matrix (ECM) Gel coated Millipore filter insert...
متن کاملI-23: Reproduction and Toll Like Receptors(TLRs
Female and male reproductive tracts are of interest sites to study of immune system because they encounter specific infections such as those are sexually transmitted. Furthermore, female reproductive tract is in close contact with allogenic sperms and transmitted microorganisms during intercourse and semi allogenic fetus during pregnancy. In mammals, there are two types of immune responses, the...
متن کاملReciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation.
Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making...
متن کاملGenetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration
Interactions between developmental signaling pathways govern the formation and function of stem cells. Prostaglandin (PG) E2 regulates vertebrate hematopoietic stem cells (HSC). Similarly, the Wnt signaling pathway controls HSC self-renewal and bone marrow repopulation. Here, we show that wnt reporter activity in zebrafish HSCs is responsive to PGE2 modulation, demonstrating a direct interactio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 50 شماره
صفحات -
تاریخ انتشار 2017